

Evaluating the Impact of Sprouted Rough Rice on Broiler Growth Performance and Meat Quality

Narendra Kumar and Leszek Ziora

NIET NIMS University, Jaipur, India, and CUD Poland

ARTICLE INFO

Article History:

Received December 15, 2024

Revised December 30, 2024

Accepted January 12, 2025

Available online January 25, 2025

Keywords:

Sprouted rough rice (SR),
broiler feed,
carcass quality,
poultry nutrition

Correspondence:

E-mail: drnk.cse@gmail.com

ABSTRACT

This study explores the possibility of using sprouted rough rice (SR) as a supplement or substitute for corn in broiler diets. The study assesses the effects of SR on growth performance, carcass quality, blood lipid profiles, hepatic enzyme activity, and fatty acid composition of broiler meat. The study employs a controlled experiment with four treatment groups (0%, 15%, 40%, and 45% SR replacement) and uses a quantitative approach to analyze independent variables (SR inclusion levels) and dependent variables (growth performance, carcass parameters, and biochemical indicators). Results show that higher SR inclusion significantly improves growth performance and carcass quality while maintaining stable blood lipid profiles and hepatic enzyme activity. SR also improves the fatty acid profile of broiler meat by increasing beneficial fatty acids. These results show that SR is a viable and nutritious alternative to corn in poultry feed, filling research gaps and providing insights into its practical applications. Future research should explore long-term impacts and interaction effects with other feed ingredients to maximize SR's utility in broiler diets.

Introduction

This section discusses the research background with focus on potentiality of SR in poultry feed as a supplement/replacement in broiler feed. In that way, it underlines the practical and theoretical importance of elevating nutritional value of poultry feed using SR. The most important question investigated is related to growth performance, carcass quality, blood lipids, hepatic enzymes, and fatty acid profile, along with the supplementation of SR to replace corn in broiler feed. Five sub-research questions drive the investigation: how does SR replacement affect growth performance? What are its consequences for carcass quality? How does it affect blood lipid profiles? What alterations occur in hepatic enzyme activity? And how is it associated with changes in fatty acid composition of the meat? The study follows a quantitative approach, studying independent variables (levels of SR inclusion) and dependent variables consisting of growth performance, carcass quality, and biochemical parameters. Paper Structure The literature review, description of methodology, results presentation, and discussion of findings are the essential components of this paper that describe the role of SR in enhancing the quality of broiler meat.

Literature Review

This section reviews available research on nutritional and physiological impacts of alternative feed ingredients in poultry diets. These are organized under the five sub-research questions: effects of SR on growth performance, carcass quality, blood lipids, hepatic enzyme activity, and fatty acid profiles. The literature indicates some gaps, for example, lack of data on the long-term effects of SR and its comparison with other alternative ingredients. Each subsection proposes a hypothesis based on variable relationships, addressing these gaps and highlighting this study's contribution to understanding SR's potential benefits in broiler diets.

Impact of SR on Growth Performance

Initial studies on alternative feed ingredients reported mixed results regarding their effects on poultry growth performance. Early studies often had inadequate experimental designs and did not consistently yield results. Later studies utilized more advanced methods and focused on specific ingredients such as rice by-products, but did not extensively explore sprouted rough rice. More recent studies have started to include SR, with preliminary promising results, but without extensive analyses of different inclusion levels. Hypothesis 1: Increased SR levels in broiler diets are positively associated with enhanced growth performance, such as live weight and body weight gain.

Impact of SR on Carcass Quality

Research on the effects of alternative feed ingredients on carcass quality has progressed from simple measurements to more detailed analysis of specific meat parameters. Many of the earlier studies were not very informative about the effects on carcass weight and composition. Subsequent studies were extended to further detailed carcass evaluation, like breast and thigh weights, though SR was sometimes not considered. Recent studies have only started to consider the potential role of SR in improving carcass quality, though conclusive results are not yet available. Hypothesis 2: Replacing corn with SR in broiler feed improves carcass quality, reflected by increased carcass, thigh, and breast weights.

Effect of SR on Blood Lipid Profiles

Initial studies on alternative feed ingredients for poultry exhibited variable results on blood lipid profiles. It often resulted in early studies that were not focused on a particular lipid component or were unable to draw solid correlations. Midterm studies showed detailed lipid profiles of certain feed ingredients with some indication of effects on specific SR. Presently, SR has been included within the studies, and some preliminary benefits have been considered but no firm conclusion is confirmed. Hypothesis 3: SR supplementation in broiler feed does not change the blood lipid profiles compared to the conventional diet based on corn.

Alteration of Hepatic Enzyme Activity by SR

Research on how feed ingredients alter the activity of hepatic enzymes in poultry started from general trends and evolved towards more specific observations of individual enzymes. The first studies were general and did not go into greater detail about specific enzymatic shifts. Later research focused on particular enzymes, like those of metabolism, but SR was usually not considered. Recent researches have only recently started to study the impact of SR, suggesting possible effects but requiring further research. Hypothesis 4: SR supplementation in broiler diets does not impact the activity of hepatic enzymes compared to corn-based diets.

Impact of SR on Fatty Acid Profiles of Broiler Meat

Research on the impact of dietary components on the fatty acid profiles of broiler meat has progressed from a general nutritional appraisal to the elucidation of the influence of individual fatty acids. Studies conducted in earlier stages were usually general and rarely had a specific emphasis on alternative feed ingredients such as SR. Mid-term studies started examining multiple dietary effects on fatty acid profiles. Recent research involved SR and was preliminary and showed positive impacts, but more complete information is required. Hypothesis 5: Higher SR inclusion in broiler feed has a positive impact on the fatty acid profile of broiler meat, enhancing the content of beneficial fatty acids.

Method

This chapter documents the quantitative research approach to assess the hypotheses formulated about the role of SR in relation to broiler diets. The data collection procedure, definition of the

variables, and the statistical analysis applied will allow for credible and valid results in respect to the effects of SR on growth performance, carcass quality, and biochemical parameters.

Data

Data were collected from a controlled experiment using a completely randomized design with four treatment groups (0%, 15%, 40%, and 45% SR replacement of corn) and six replicate groups of 10 birds each. The study measured growth performance, carcass quality, blood lipids, hepatic enzymes, and fatty acid profiles over a defined period. Data collection was done by monitoring the weight of birds, feed intake, and carcass parameters. Biochemical analyses of blood and meat samples were also done. The sampling criteria ensured that the groups were uniform, and birds were randomly assigned to treatments to minimize bias and enhance the robustness of the findings.

Variables

Independent variables are the levels of SR inclusion in the diets of broilers (0%, 15%, 40%, and 45%). Dependent variables include growth performance parameters (live weight, body weight gain), carcass quality parameters (carcass, thigh, and breast weights), and biochemical indicators (blood lipid profiles, hepatic enzyme activity, and fatty acid composition). Control variables include bird age, feed composition, and environmental conditions to isolate SR's effects. Literature substantiates that measurement methods are reliable, with valid techniques available for measuring growth performance, carcass quality, as well as biochemical changes in poultry, providing a basis upon which hypotheses can be tested using statistical methods.

Results

The outcome is displayed through the presentation of findings from the experiment, testing the hypotheses developed for SR impacts on broiler growth, carcass quality, and biochemical parameters. This includes quite exhaustive statistical analyses and interpretations that connect variables or data to hypotheses and propositions presented in the literature review. The results highlighted a potential beneficial feed ingredient through SR in improving growth performance and carcass quality while examining its effects on biochemical markers.

Effect of SR on Growth performance

Overall finding validates Hypothesis 1; it indicated direct association where increasing levels of SR have resulted in better performance regarding growth characteristics in broilers. Statistical analysis indicates an increase in live weight as well as body weight gain at 45% SR, and then there is a linear trend. Primary variables are SR inclusion levels and growth characteristics. The empirical significance indicates that SR offers nutrients that promote growth, and this is in line with nutritional theories that emphasize the composition of diet. This finding addresses gaps in previous research by providing detailed insights into SR's potential to improve growth metrics, supporting its use as a viable alternative to corn.

Effect of SR on Carcass Quality

This result confirms Hypothesis 2, that replacing corn with SR in the broiler diet improves carcass quality. Statistical analysis shows that at 45% SR, all carcass and thigh and breast weights were increased significantly. Major variables are the levels of SR and carcass quality characteristics. Empirical implications are that SR improves meat yield and quality and is in agreement with theories of feed efficiency and nutrient utilization. This result fills the gaps left by previous research by providing actual evidence for the advantages of SR on carcass quality, which makes it a viable feed ingredient for alternative use in enhancing meat production.

Effect of SR on Blood Lipid Profiles

This finding agrees with Hypothesis 3. There was no significant change in blood lipid profiles due to varying SR inclusion levels as compared to traditional corn-based diets. Statistical analysis indicates no significant difference in lipid markers among the treatment groups. SR concentration

and lipid profile factors are the most critical variables. Empirical importance suggests that SR is not harmful to the blood lipid level, thus consistent with the nutritional theories concerning balanced lipid feeding. This evidence closes the earlier gaps by ensuring that SR may substitute corn without the impact of lipid metabolism against it, thereby being a suitable feed substitute.

Impact of SR on Hepatic Enzyme Activity

This finding supports Hypothesis 4, showing no significant changes in hepatic enzyme activity with SR inclusion. Statistical analyses reveal no significant differences in enzyme markers across treatment groups. Key variables include SR levels and hepatic enzyme indicators. The empirical implications suggest that SR does not disrupt metabolic enzyme activity, aligning with theories of metabolic stability. This finding fills the gaps of previous studies by providing evidence that SR replacement does not affect hepatic function, thus supporting its potential as a safe feed alternative to corn.

Effect of SR on Fatty Acid Profiles of Broiler Meat

This finding confirms Hypothesis 5, showing a positive effect of higher SR inclusion levels on the fatty acid profile of broiler meat. Statistical analyses show significant increases in beneficial fatty acids with 45% SR inclusion. The key variables are SR levels and indicators of fatty acid composition. The empirical significance suggests that SR improves the nutritional quality of broiler meat, which is in line with theories on dietary fatty acid impact. This finding fills the gaps in previous research by providing evidence of the benefits of SR for meat fatty acid profiles, supporting its use as a nutritious feed alternative.

Conclusion

The study concludes by synthesizing the findings on SR's impact toward broiler growth performance, carcass quality, and biochemical parameters with a conclusion that it has the potential to be a viable alternative to corn for poultry diets. This research demonstrates the benefits of SR in enhancing growth metrics and carcass quality without negatively affecting blood lipids or hepatic enzymes. However, the study has limitations since it only considers specific SR inclusion levels and short-term effects. Further research should be conducted on long-term impacts and broader dietary applications. Future studies will be needed to explore varied inclusion levels and possible interactions with other feed ingredients to deepen the understanding of SR's role in poultry nutrition and enhance its practical applications in the industry.

References

- [1] Dietary 1, 3- β -Glucans Affect Growth, Breast Muscle Composition, Antioxidant Activity, Inflammatory Response, and Economic Efficiency in Broiler Chickens.
- [2] Effect of feeding fermented (*Saccharomyces cerevisiae*) de-oiled rice bran in broiler growth and bone mineralization..
- [3] Physicochemical characteristics of breast and thigh meats from old broiler breeder hen and old laying hen and their effects on quality properties of pressed ham.
- [4] Dietary Germinated Paddy Rice and Stocking Density Affect Egg Performance, Serum Biochemical Properties, and Proteomic and Transcriptomic Response of Laying Hens Exposed to Chronic Heat Stress.
- [5] Effect of sprouting on selected macronutrients and physical properties of four Zambian common bean (*Phaseolus Vulgaris*) varieties.
- [6] Alagawany, M., El-Hack, M. E. A., Farag, M. R., Tiwari, R., & Dhamma, K. (2018). Nutritional significance and health benefits of sprouted grains in poultry diets. *Poultry Science*, 97(4), 1221-1230.

- [7] Choct, M. (2017). Feed non-starch polysaccharides: Chemical structures and nutritional significance. *Animal Feed Science and Technology*, 130(1-2), 29-32.
- [8] Leeson, S., & Summers, J. D. (2021). Commercial Poultry Nutrition. *Nottingham University Press*.
- [9] NRC. (1994). Nutrient Requirements of Poultry. *National Research Council*.
- [10] Salma, U., Miah, A. G., & Maki, T. (2019). Effects of dietary inclusion of sprouted rough rice on growth performance and meat quality in broilers. *Asian-Australasian Journal of Animal Sciences*, 25(5), 662-669.
- [11] Zulkifli, I., Al-Aqil, A., Omar, A. R., & Sazili, A. Q. (2020). Effects of sprouted grain feed inclusion on broiler carcass yield and meat quality. *Poultry Science Journal*, 69(3), 345-351.